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Nanocrystalline fcc Materials ) \
ry AsC
« Transition in deformation rem———— amakov, 2003
mechanism in fcc metalsas |
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Partial Dislocations ASC
' Di iation of rfect edge disiocation.
+ fcc metals plastically deform AL S
through the. motlo_n of ks Tl
extended dislocations. begge -

p2

* In bulk and large grained
materials, these extended
dislocations are very close (~1nm)
and are often considered a single g
unit called a perfect dislocation.

* In nanocrystalline metals, this
assumption is inaccurate.

 When atoms slide past each other
they move in a zig-zag motion.

— More energetically favorable.

~“inm

Schematic showing slip and Yamakov, 2003
dislocation dissociation in a
« Los Alamos for matal.
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Outline é}«

« 3D PFDD Model Formulation

 Phase field variable

« System energy and evolution
— Elastic interaction energy
- GSF Energy — Perfect Dislocations

- GSF Energy — Partial Dislocations
= Modeling the y-surface

« Simulations and Results
« Verification with analytical solution

« Size Effects
- Dislocation nucleation vs. dislocation growth

« Summary and Future Research Goals
.5
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Phase Field | g N

* The phase field model tracks individual dislocations.

* The dislocation collective is described by the phase
field variable, defined over each slip plane.

* Phase field is integer valued, and records (including
sign) the number of dislocations that cross over the slip
plane in units of the Burger’ s vector.

* The location of a dislocation line corresponds to an integer jump in
the phase field.
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Model Formulation Aasc
» Consider a crystal undergoing deformation

» Elastic (reversible) deformation

. Plastic (permanent) deformation %7 — Mij + By

» Plastic deformation is mediated by the =i

. . . . . T\ :

motion and interaction of dislocations % /\ \ T Y

* (Can be directly related to the phase field: f l

B (a Z b si(@m;(a) [ TN

 Temporal evolution of the phase field is driven by
minimization of the total energy of the system.

o(eyzt) . OF
ot T (o, 2, ) SE
« Steady-state Ginzburg-Landau Equation — 5 (a7, 8) =0
’ Lo"s“ALIaBm?s Koslowski, 2002; Wang, 2001; Hunter, 2008
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» Total energy of the dislocation ensemble in a material
System: E — Eelast + EGSF
» Elastic Interaction Energy
« Core Energy

» Elastic Interaction Energy

 Internal — dislocation-dislocation interactions
— Elastic term, must be written in terms of the plastic phase field variable

- External — dislocation interactions with applied stress
— Zero applied stress for simulations presented later

elas n e 1 1 5 AP % ~ ~ %
ERt=EM 4 BT = o / [5Cz-jkzﬁ:;n (k) BEy (k) — kiij (k) Qe (k) 67y (k) by | d°k
- / oGP 3
’ !'A?gvb ngmgé Koslowski, 2002; Wang, 2001; Hunter, 2008
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GSF Energy — Perfect Dislocations Q«

* Accounts for energy required to move the dislocation
core through the crystal lattice

[GSF _ /
 Mimics Peierls Potential Z Z Dol

a=1n=1

— Periodic due to periodic nature of crystal lattice

« Can be described using several different functional
forms £

* Piecewise Quadratic
* Sinusoidal

— Fourier Sine Series
= Positive constant can be obtalned from molecular dynamlcs (MD

simulations
q
EGSF:/ ZAwin?(wC(a,x)) d>x
A a=1
> Los Alamos Koslowski, 2002; Ortiz, 1999; Wang, 2001; Hunter, 2010
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GSF Energy — Partial Dislocations ASC

* Energetically favorable for defects to overcome two
small energy barriers rather than one large barrier
 Frank’srule—— b’ > p’ + p;

e y-surface accounts for additional energy
required to create a stacking fault
 Global minima— displacement step of a Burger’ s vector

Hunter, 2011

— Lowest possible energy configuration

* Local minima— partial dislocation direction 7T —csr . 5
I ~ sin“(nr{(a,x))
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* The three active slip systems mustbe ___ Aluminum
coupled 3 e

« Linear combination of the phase fields needed
to produce displacements in (112) directions

« Fit complex Fourier series to y-surface
found using MD simulations
« 7 coefficients

E“¢((1,(2,(3) = {co+alcos2m ({1 — () + cos2m ((o — (3) + cos2m (G5 — (1)]
+ ¢alco82m (2(1 — (o — (3) + c082m (2(2 — (3 — (1) + cos2m (2(5 — (1 — (2)]
+ c3[cosdn (1 — (2) + cosdm ((2 — (3) + cosdm ({3 — (1))
+ cqfcosdm (3(1 — (2 — 2(3) + cosdn (31 — 2(2 — (3)
+ cosdm (3(a — (3 — 2(1) + cosdm (3C2 — 2(3 — (1)
+ cosdm (3(3 — (1 — 2(2) + cosdm (3¢3 — 2(1 — (3]
+ay[sin2m (Q1 — G2) + sin27 (G2 — (3) + sin27 ({3 — (1)
+ ag[sindm ({1 — (o) + sindm ({2 — (3) + sindw (3 — (1) }/w
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* Infinitely long dislocation, periodic o
boundary conditions %
« Edge Orientation — Larger elastic energy g \J 7“7 A i
component allows partials to dissociate farther /> //'ﬁ_’

- Screw Orientation — Elastic energy smaller by a ™
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Verification @

« Compare equilibrium stacking fault widths from
simulations to analytical solutions
« Burger’ s vector reaction:b; — by + b3 or

@

o[0T — 2 [211) + % 112]

6
by X E5) - (bs X *
vr = P by ) (g &) 1+ 228 0 X&) 7
27T, 1—v b, /
Hirth and Lothe, 1982 e \
Material | Analytical (b) | Simulation (b) b
Ale 2.54 3.0+0.5 Atomistics
Als 1.04 1.8+ 0.5 *Al®: 2.8 -13.3b
Pde 415 49+05 *Ni®:5.9-10.0b
oNis: 2.9-10.1Db
Pds 1.54 1.8+ 0.5 . .
_ *Discrepancies due to
N 8.04 81205 | differences in the y-surface
| Ni 5.11 °2+05 | from use of different atomic
» Los Alamos potentials Hunter, 2011
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Simulations H/;E
* Initial Conditions: * Boundary Conditions:
« Perfect dislocation * Fixed grain boundaries
- Only 1 active phase field - 4D thick
* Half Loop  Applied Stress L
» Cluster of obstacles . Shear stress, o x

— Fixed/trapped dislocations
* Nickel

Obstacle Cluster Half Loop

1.000e+00
7.500e-01
5.000e-01 <€— 2D thick
2.500e-01
0.000e+00

<€— Radius =~ 5-10b
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Dislocation Nucleation AsSC

——

Threshold Stress {GPa)

—— Grain size has little impact

a5 | — on defect nucleation
a S—pe —e - Dependence seen in very small
=T : e grain sizes

is “*r=8b - Dependence inversely

. ool proportional to initial defect size
0 50 100 Srain ]‘.NSi(‘)ith o) 200 250 300 gl: \

- Defect nucleation is highly £ o
dependent on initial defect £,, -2
size 1
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Dislocation Growth
dA

dx
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Size Effects | AsC
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Summary and Future Research é%

« Successful implementation of partial dislocations through
reformulation of the generalized stacking fault (GSF) energy
* Included dependence of Peierls potential on the y-surface

* Results had good comparison to analytical solution and MD
simulations

- Infinitely long dislocation lines — equilibrium stacking fault widths

* Apply partial dislocation implementation to study size effects

« Grain size variation has little impact on dislocation nucleation
— Variation in the initial defect size has a much larger impact on nucleation

» Grain Size variation does impact dislocation growth
— Emergence of trailing partial has large dependence on grain size
* Future research goals
* Investigate twinning

/—+ Implement grain boundary energy
» Los Alamos
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Abstract

The inelastic response of crystalline materials is mediated by dislocation motion and their interaction with defects, such as
second phase particles, dislocations, grain boundaries and voids. Accounting for such defect interactions is particularly
important when the scale of the volume analysis approaches low dimensional microstructure scales as in micron and sub-
micron size devices, and nanocrystalline materials. Specifically, when the internal microstructure (i.e. grain size, film
thickness) approaches tens of nanometers a transition in dominant deformation mechanisms occurs, and plasticity is
mediated through the motion and interaction of Shockley partial dislocations in addition to perfect dislocations. This research
investigates this deformation mechanism transition in fcc metals using a 3D phase field dislocation dynamics (3D PFDD)
model that incorporates a dependency on the material y-surface in order to model dislocation dissociation. In addition, size
effects and the impact of confinement are discussed in relation to the stacking fault width between leading and trailing partial
dislocations.
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